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Abstract: Many people suffer from different skin diseases, which can be diverse and varied.
Most skin diseases cause disorders in the skin, such as changes in color, texture, and appearance
manifesting in spots, swelling, scaling, ulcers, etc. One of the diseases that represents a serious
health problem is skin cancer. The most dangerous skin cancer is malignant melanoma, which
can cause death if not detected early. Therefore, development of new and accurate diagnosis
methodologies to increase the chance of early detection is important. In this work, an analysis to
discriminate between malignant melanoma and three types of benign skin lesions–melanocytic
nevus, dermatofibroma, and seborrheic keratosis–is realized by calculating spectral indexes based
on the real and imaginary parts of a fractional nonlinear filter obtained by affecting the modulus of
the fractional Fourier transform by an exponent k. The fractional spectral indexes were calculated
by working with selected sub-images obtained by dividing the input image. Also, a variation
was implemented when the Hermite transform is used to calculate the fractional nonlinear filter.
Discrimination between malignant melanoma and benign skin lesions was achieved with a 99.7%
confidence level.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

The identification and classification of skin lesions are essential for the diagnosis of any disease.
Skin lesions are alterations in the surface of the skin; which can be caused by pathological change.
Many conditions affect humans, and skin cancer is one of them, which is an abnormal growth
of skin cells. Some lesions or tumors on the skin may be non-cancerous. Melanocytic nevus,
dermatofibroma, and seborrheic keratosis are some of the benign skin lesions. Melanocytic
nevus is a benign skin condition characterized by an abnormally dark spot, can be flat or raised;
it is composed of pigment-producing cells [1,2]. A person may have congenital or acquired
melanocytic nevus. Melanocytic nevus is benign tumors and can appear anywhere on the body;
its color varies with time and may be lighter or darker. However, large ones may increase the risk
of developing melanoma. Dermatofibroma is a common benign tumor or lesion of oval or round
shape and grows slowly with a yellowish or brownish-gray color; its consistency is hard. This
tumor can measure from a few millimeters to 2 centimeters, and it occurs more frequently in
women. Dermatofibroma is a benign tumor without the risk of becoming malignant. Usually, its
diagnosis is by ocular inspection. It presents some characteristics similar to melanoma, so its
detection may be confusing [2]. Seborrheic Keratosis is another benign tumor that occurs on the
skin, has a light to dark brown color, and slightly elevated with a warty surface and sometimes
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with a slight flake. Its diameters vary from 1 millimeter to 4 centimeters; it is usually located
in the head or trunk. It occurs more often in areas of the body exposed to the sun. It appears
more frequently in adults [3]. Seborrheic Keratosis is soft and greasy to the touch, appears
on the healthy skin. Rarely, there are cases of melanoma that arise within or that are adjacent
to seborrheic keratosis. Skin cancer is a malignant disease that is generated by division and
uncontrolled grown of the cells that make it up. It can invade tissues, healthy structures, and
even organs from a distance. There are three main types of skin cancer: basal cell carcinoma,
squamous cell carcinoma, and melanoma. From all the types of skin cancer, malignant melanoma
is the least common even though it is the most dangerous because of the ability to take place
anywhere on the skin [4]. It can spread to other organs in the body (metastasis). If it is not
detected early it can cause death, but it is almost curable in its early stages [5]. It can have a
variety of colors that include white, brown, black-blue, red, or even light gray.

The principal risk factors related to skin cancer are exposure to the sun, skin color, climate, age,
and genetic predisposition. For the diagnosis of skin diseases, one of the steep is to classify skin
lesions for preventing the spread of cancer, by making its early detection increases the possibility
of cure cancer. Currently, the interest in the development of automated techniques that allow
analyzing dermatological images has increased. Visual inspection of the skin for new spots that
change size, shape, and color, is the most common way to detect malignant melanoma, and early
detection can avoid death [6]. Therefore, the search for better diagnostic methods has been a
concern for dermatologists.

The image analysis of skin spots has allowed an essential advance in the diagnosis and treatment
of diseases. Dermofit Image Library contains a set of images with various conditions or skin
lesions; these images are of high quality and have been confirmed by biopsies and histopathology
examination. Different workgroups that belong to universities, hospitals, and departments of
dermatology collaborate for Dermofit Image Library, which is used for the analysis of skin lesions
[7,8]. In recent years’ digital image processing has been used as an alternative for developing
methods in this area to provide an accurate and automatic diagnosis with the advantage of being
noninvasive for the patient [9]. Various studies for malignant melanoma have been done. In
2011 Gola et al. [10] developed an algorithm based on obtaining the shape of the skin lesion
to extract features of interest. A similar method was proposed by Rahman and Bhattacharya
[11] to discriminate from malignant melanoma, benign lesions, and dysplastic nevi. They used
classifiers such as support vector machine (SVM), k-nearest neighbors (K-NNs), and Gaussian
maximum likelihood (G-ML), to detect the morphology of the lesion in grayscale applying
segmentation. Then color features are extracted and used to train the classifiers. The highest
precision obtained was 72.5%. Abdul Jaleel et al. [12] proposed a methodology based on
artificial neuronal networks to classify malignant melanoma from other skin diseases. Noise from
the images was removed first by a preprocessing stage; then, it is smoothed by a median filter. In
a later stage, the image is segmented and binarized by applying a threshold, and a 2D wavelet
transform is applied to the segmented image to extract features like the mean, standard deviation,
absolute mean, L1 norm, and L2 norm and used to train the network. Betta et al. [13] described
a method for detecting the atypical pigmented network. In this methodology, a combination of
structural and spectral techniques was used. The texture defined by local discontinuities like
lines and points is identified by the fundamental method. Fourier analysis is used for the spectral
approach to obtain the spatial period of texture; in this way, a “regions with a network” mask
is created. Recently Guerra-Rosas and Álvarez-Borrego [14] developed a methodology for the
diagnosis of skin cancer on images of dermatological spots by using sub-images selected from a
segmented image to calculate four different spectral indexes obtained from the real and imaginary
parts of various filters. Also, Guerra-Rosas et al. [15] developed a method for the detection of
malignant melanoma in tissues based on signatures via spectral densities.
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In this work, discrimination from malignant melanoma and three types of benign skin lesions
are performed by calculating four spectral indexes based on the real and imaginary parts of a
nonlinear filter obtained from the fractional Fourier transform (FrFT) of an input image. The
ordinary Fourier transform is a particular case of fractional Fourier transform; it is also a valuable
tool for signal processing. A variation when the nonlinear filter is obtained by calculating the
FrFT of the Hermite transform (HT) of the input image was also performed.
The rest of the paper is organized as follows. In section 2, a description of the images used

and the segmentation process is explained. In part 3, the definition of the FrFT is presented.
Section 4 defines a fractional nonlinear filter. The definition of the HT is presented in part 5.
Section 6 describes the discrimination methodology used to analyze skin lesions, with a variation
implementing the HT. In section 7, computer analysis and results are presented, and in section 8,
conclusions are given.

2. Images and segmentation

2.1. Images

The images were obtained from Edinburgh Dermofit Library (https://licensing.edinburgh-
innovations.ed.ac.uk/i/software/dermofit-image-library.html). Ballerini L et al., wrote: “The
ground truth used for the experiments is based on the agreed classifications by two dermatologists
and a pathologist. Images are acquired using a Canon EOS 350D SLR camera. Lighting was
controlled using a ring flash, and all images were captured at the same distance (∼50 cm),
resulting in a pixel resolution of about 0.03 mm” [16]. In this study, images of melanocytic
nevus, dermatofibroma, seborrheic keratosis, and melanoma are considered. All photos have the
same file type (jpg).

The image bank consists of 729 images divided into four types of skin lesions: 77 of malignant
melanoma (MEL), 65 of dermatofibroma (DF), 331 of melanocytic nevus (MN) and 256 of
seborrheic keratosis (SK). Where lesions DF, MN, and SK are three types of benign lesions.
Figure 1 shows some example images of these lesions. We use these images (DF, MN, and SK)
because of look similar to several pictures of melanoma. The conditions for an image to apply
this method are: must be in focus and taken normal to the image.

2.2. Segmentation

Segmentation is an essential task in image processing. In the field of the medical image
has applications that include, blood cell classification, detection of microcalcifications in
mammography, detection of tumors, etc. Different algorithms have been developed to separate an
object of interest from the background of an image. One of the most used methods for simplicity
is the thresholding, which allows one to segment an image by separating the area of the skin
lesion from the background of the picture. The condition to binarize is defined as

Mask(x, y) =


1 if Igray(x, y) > T

0 if Igray(x, y) ≤ T
, (1)

where Igray(x, y) is the original grayscale image, T is the threshold and Mask(x, y) is the resulting
mask. Sometimes to get the optimal threshold value, the Otsu method is used. Which considers
the maximum variance between classes by an exhaustive search of the background and the skin
lesion, defined by

T = max(σ2). (2)

Otsu’s thresholding is widely used because of its simple calculation. However, in this work
to segment the images, a new automated method, called Simple Weighted Otsu Thresholding
(SWOT) developed by Zortea et al. [17] was used. It is considered that the object of interest

https://licensing.edinburgh-innovations.ed.ac.uk/i/software/dermofit-image-library.html
https://licensing.edinburgh-innovations.ed.ac.uk/i/software/dermofit-image-library.html
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Fig. 1. Skin lesions images. (a) DF. (b) MEL. (c) MN. (d) SK.

is approximately centered on the image, so a transversal diagonal sampling is done. SWOT
performs a variation of the Otsu thresholding method, considering the samples in the image and
the samples in the cross-diagonals. SWOT is easy to use; the results presented by this method
are good.

The images were segmented using the SWOT method to extract only the area that contains skin
lesion, generating a binary image, which is called a binary mask. In this way, the healthy skin
was removed from each of the images. In this work, with the 98.68% of cases, the segmentation
was able to correctly determine the areas of skin lesion and healthy skin.

Once the mask is obtained, a point to point multiplication is performed between the original
image and the mask as the final step in the image segmentation. The segmented image is the one
used as the input to the system. The process applied to a melanoma image is shown in Fig. 2,
where AMask is the area of the mask over the region of interest, given by:

AMask =
∑

x, y
Mask(x, y), if Mask(x, y)> 0. (3)

2.3. Sub-images

In this work, sub-images were used. For obtaining the sub-images, the binary image Mask(x, y)
corresponding to a specific image is divided into twenty-five sub-masks: Maskq(x, y) for
q = 1, .., 25. In this way, all images used in this study into 25 sub-images were divided; it is worth
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Fig. 2. Segmentation process, where • is a point to point multiplication. (a) Original
grayscale image. (b) Mask. (c) Segmented image.

mentioning that these are of different size. Also, the number of sub-images considered for each
image depends on the area of the corresponding image. The division process is shown in Fig. 3.

Fig. 3. Image division. (a) Sub-masks Maskq(x, y). (b) Corresponding sub-images I(x, y)q.

For this work, only useful sub-images were selected. The selection is made by considering
only the sub-images where its corresponding mask has a region of interest with an area:

AMaskq =
∑
x, y

Maskq(x, y), if Maskq(x, y) > 0, (4)

that complies with the condition:

AMaskq ≥
1
3
[Areaq], (5)

where Areaq is the total area (including the background) of the corresponding sub-mask
Maskq(x, y).

In this way, the selected sub-images are the ones that contain information greater or equal to
one-third of the total area of the sub-image. Figure 4 shows an example of the sub-images chosen
from the image shown in Fig. 3.
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Fig. 4. Sub-images selected for having information greater than or equal to one-third of its
area.

3. The fractional Fourier transform

For ease, the 1D definition of the FrFT is presented. The FrFT as defined by Ozaktas et al. [18],
it can be defined as

Gα(u) = Fα{g(x)} =
√
1 − jcotαejπu2cotα ∞

∫
−∞

g(x)ejπx2cotαe−j2πuxcscαdx, (6)

where j =
√
−1, x is the variable of the original function in the space domain, u is a dummy

variable and α is the rotation angle in the space-frequency plane (Fig. 5). Thus, the FT operator
F to a fractional order p of a function g(x) is F p{g(x)} = Gp(u), where

p =
α
π/2

. (7)

Fig. 5. FrFT representation in the space-frequency plane.

Equation 7 means that by changing the fractional order p, different α angles are achieved, and
the classical FT operator is a particular case of the FrFT of order p = 1, or equivalently, an angle
α = π/2, as shown in Fig. 5.
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4. Fractional nonlinear filter

A nonlinear filter of a function g(x) is defined as

NLF{g(x)} = |G(u)|kejφ(u), (8)

where φ(u) is the phase of the Fourier transform and k is the level of nonlinearity [19], which can
take values 0 < k < 1 Eq. (19), and it affects the modulus of the Fourier transform |G(u)|.
In this work a nonlinear filter in a fractional plane or fractional nonlinear filter (FrNLF) was

used, that is, the modulus of the FrFT of a function g(x) is now affected by the factor k as

NLFp{g(x)} = |Gp(u)|kejφ(u). (9)

where p is the order of the FrFT and k = 0.1 for this work.

5. The Hermite transform

A polynomial transform is a technique in which signals are locally approximated by polynomials,
and the Hermite transform is a particular case that is used to decompose signals and can be
regarded as an image description model. The polynomial transform analysis is performed in
two steps [20]. In the first step, the image L(x, y) is multiplied by a local function or window
v(x − β, y − γ). To achieve a complete description of the picture, β and γ are changed to displace
the window and create a sampling lattice S. By applying the window along the entire sampling
lattice, a weighting function is defined as

W(x, y) =
∑
(β, γ)∈S

v(x − β, y − γ), (10)

where x and y are the coordinates of a pixel. This weighting function must be different than zero
for all coordinates (x, y). Therefore,

L(x, y) =
1

W(x, y)

∑
(β, γ)∈S

L(x, y)v(x − β, y − γ). (11)

As a second step, the local information in each window is expanded in terms of orthogonal
Hermite polynomials GM, N−M(x, y) that satisfy the orthogonality condition

∞∫
−∞

∞∫
−∞

v2(x, y)GM, N−M(x, y)GL, K−L(x, y)dxdy = δNLδMK , (12)

where M and N −M are the degrees respect to x and y respectively and δNL and δMK are Kronecker
delta functions, for N, K = 0, 1, . . . ,∞; M = 0, 1, . . . , N and L = 0, 1, . . .K.
The Hermite transform is a particular case when the windows used are Gaussian functions

[20]. The Gaussian window function is defined as

v(x, y) =
1

2πσ2 exp
[
x2 + y2

2σ2

]
, (13)

where σ is the standard error and the associated orthogonal polynomials are the Hermite
polynomials defined as

GN−M, M(x, y) =
1√

2N(N −M)!M!
HM

( x
σ

)
HN−M

( y
σ

)
, (14)

where HN(x) denotes the Nth Hermite polynomial. Thus Eq. (10) indicates that in every window
function, the image content is described as a weighted sum of polynomials GM, N−M(x, y) of the
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degree M in x and N −M in y. By convolving the original image L(x, y) with a filter function
DM, N−M(x, y) = GN, N−M(x, y)v2(−x, −y), following with a subsampling at the location (β, γ)
of S, we get the polynomial coefficients

Lm, n−m(β, γ) =
∞∫

−∞

∞∫
−∞

L(x, y)DM, N−M(x − β, y − γ)dxdy. (15)

Therefore, for the Hermite transform, the filter functions correspond to Gaussian derivates of
order M in x and N −M in y [21].
Figure 6 shows an example of the Hermite transform of an image of a melanoma lesion,

considering the transform order.

Fig. 6. (a) Hermite transform of melanoma image. (b) Diagram of coefficient orders.

In recent work, Castro-Valdez and Álvarez-Borrego [22], used the Hermite transform joint to
classical correlation to recognize phytoplankton species and based on the noise in the output
correlation plane, demonstrated that the optimal order of the Hermite transform is L1,1.

6. Spectral indexes

6.1. Spectral indexes of an image using the FrNLF of the selected sub-images

For this task, first, the FrNLF of a selected sub-image is obtained. Next, the binary fractional
spectral densities (SSFR) are calculated by applying the conditions

SSFR1q =


1, if Re[NLFp{Iq(x, y)}] ≥ 0

0, otherwise

 ,

SSFR2q =


1, if Re[NLFp{Iq(x, y)}] < 0

0, otherwise

 ,

SSFR3q =


1, if Im[NLFp{Iq(x, y)}] ≥ 0

0, otherwise

 ,

SSFR4q =


1, if Im[NLFp{Iq(x, y)}] < 0

0, otherwise

 ,

(16)
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where Re[NLFp{Iq(x, y)}] and Im[NLFp{Iq(x, y)}] are the real and imaginary parts respectively
of the FrNLF of the sub-image, q is the number of the sub-image and p is the fractional order.
Thus the fractional spectral indexes of each sub-image are

indexSSFR
nq =

AMaskq

SSFRnq

, (17)

where n = 1, 2, 3, 4 and AMaskq is the sum of the unit values present in the sub-image mask.
Finally, the fractional spectral indexes for the corresponding image are obtained as

indexSSFR
n =

Q∑
1

indexSSFR
nq

Q
, (18)

where n = 1, 2, 3, 4 and Q is the total number of sub-images extracted from the image, which
agree with the condition of Eq. (5).

6.2. Spectral index using the FrFT of the Hermite transform (HT)

A variation of the method described in section 6.1, it is when the indexes are obtained by
calculating the Hermite transform of the order (1, 1) of a sub-image before calculating its
fractional nonlinear filter and extract its real and imaginary parts to apply the four conditions in
Eq. (16) to obtain the binary fractional spectral density.

7. Computer analysis

7.1. Optimal order of the FrFT

From section 3, it can be observed that the fraction order p can take values between 0 to 1, which
select points between the space domain and the frequency domain; therefore, an optimal order p
must be selected. For the search of the optimal order for each of the four spectral indexes, the 76
images of melanoma (MEL) are used as a reference. Then, for the selected sub-images of each
melanoma image, the fractional spectral indexes are obtained for a particular order p, and the
mean of the fractional spectral indexes are calculated based on the results in Eq. (16), as

mean(indexSSFR
n ) =

76∑
m=1

indexSSFR
nm

76
, (19)

where m is the number of the melanoma image processed. The process is repeated by changing
the order p from 0.01 to 1, in steps of 0.01, and the order that gives us the higher mean value
is the optimal order for the respective fractional spectral index. The optimum orders for each
fractional spectral index for sub-images are shown in Table 1.

Table 1. Optimum orders for each fractional spectral index using sub-images.

Index Order p

indexSSFR
1 0.9

indexSSFR
2 0.01

indexSSFR
3 0.03

indexSSFR
4 0.91

For the case when the HT is used, the optimum orders are obtained the same way. Table 2
shows the optimum orders for the method when the HT of the sub-images are calculated.
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Table 2. Optimum orders for each fractional spectral index using the HT of the sub-images.

Index Order p

indexSSFR
1 1

indexSSFR
2 0.01

indexSSFR
3 0.01

indexSSFR
4 0.53

7.2. Results of the discrimination process applied to all four types of skin lesions

The method described in section 6.1, was repeated with the images of each skin lesion, and an
interval of the mean indexes ±3 standard errors (Table 3), which gives a 99.7% confidence level
was generated. This process was done using the optimum orders shown in Table 1. The same
interval was obtained for the variation described in section 6.2 when the HT is implemented,
using the optimum orders shown in Table 2 (Table 4).

Table 3. Fractional spectral indexes intervals for melanoma images.

Index Intervals for malignant melanoma

indexSSFR
1 114.2 - 142.4

indexSSFR
2 130.3 - 171

indexSSFR
3 123.2 - 156.6

indexSSFR
4 114.3 - 142.6

Table 4. Fractional spectral indexes Intervals for the melanoma images implementing the Hermite
transform.

Index Intervals for malignant melanoma

indexSSFR
1 139.6 - 187.6

indexSSFR
2 109.7 - 137.4

indexSSFR
3 109.3 - 136.4

The diagnosis of a skin lesion by a dermatologist remains subjective. The diagnostic accuracy
range is 64% to 80% [23–26], measured in specialized dermatology centers. Nowadays, most
diagnoses are made by physician assistants, which accuracy is lower than the dermatologists [27].

Because the images of melanoma (MEL) were used as a reference, then, by working with these
optimum orders, better discrimination between melanoma and the other skin lesions is expected.
The results when the FrNLF of the sub-images is used are sown in Fig. 7, showing box-whisker
plot with median, quartiles and outliers of box plot.
There is an overlap, for the four cases on 25%-75% quartiles; however, the median value is

lower in all the instances for MEL. These graphs show results more transparent. Sensitivity and
specificity were calculated (Table 5). Bad results can be seen in all cases. Sensitivity values are
so low for melanoma, and most of the cases, specificity is less than 80%. For this reason, to use
fractional Fourier transform with a mean spectral index does not work.
For the case when the FrNLF of the HT of the sub-images is implemented, the results are

shown in Fig. 8. In this case, there is not an overlap of melanoma on 25%-75% quartiles for case
(a). Analyzing the values obtained for sensitivity and specificity (Table 6), we can see that, case
(a) is the only way to determine melanoma with a precision better than dermatologists [23–26].

However, in this case is used the order 1 (Table 2), in another words, the classical Fourier
transform is used. For this reason, talking about the mean of the spectral index, the interval used
for melanoma detection is 139.6-187.6.
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Fig. 7. Results of the fractional spectral indexes of sub-images. (a) indexSSFR
1 . (b) indexSSFR

2 .

(c) indexSSFR
3 . (d) indexSSFR

4 .

Table 5. Sensitivity and Specificity for FrNLF
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Table 6. Sensitivity and Specificity for FrNLF with Hermite

Fig. 8. Results of the fractional spectral indexes when working with the HT of sub-images.
(a) indexSSFR

1 . (b) indexSSFR
2 . (c) indexSSFR

3 . (d) indexSSFR
4 .
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The time consumption was 2 s for the first method and 2.2 s when HT is used. The times were
obtained in a Windows 10 computer with a 3.40 GHz Intel Core i7-3770 and 8 GB DDR3 RAM.

8. Conclusions

This paper presents a new methodology for the discrimination of malignant melanoma skin
cancer from other three types of benign skin lesions based on fractional spectral indexes obtained
in two ways, first, when only the fractional Fourier transform is used to generate the nonlinear
filter. Second, when the Hermite transform is used before the fractional Fourier transform is
applied. Both approaches were employed when sub-images are extracted from an image.
Box-whisker plot with median, quartiles and outliers of box plot were used in these analysis.

For the case when the FrNLF of the HT of the sub-images is implemented, there is not an overlap
of melanoma on 25%-75% quartiles for case (a). This is the only way to determine melanoma
with a precision better than dermatologists. For this reason, talking about the mean of the spectral
index, the interval used for melanoma detection is 139.6-187.6.
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